
30 The Delphi Magazine Issue 58

Beating The System:
Groovy Group Boxes
by Dave Jewell

So what’s with this group box
stuff, Dave? At the end of last

month’s column, you promised to
do some more with Windows 2000
transparency and translucency
effects, applying them to individual
controls rather than the applica-
tion window. So where is it, eh?
Well, I was afraid you were going to
ask that! The fact is that... err... it
didn’t work. All that wonderful
window layering I discussed last
month only seems to work for top
level windows. So there you have
it, or not as the case may be.

Building Better Group Boxes
This month, I’m going to tiptoe qui-
etly away from translucency and
take a look at how to improve
Delphi’s group box component. My
original plan was to produce some
really dazzling new Delphi con-
trols, courtesy of the translucency
support in Windows 2000, but
since that’s not worked out, I’m
hoping that this month’s group box
control will placate you instead!

This article was prompted by
some recent consultancy on a large
commercial project. The develop-
ers were keen to trim some fat from
their seriously bloated application
and wanted advice on how to do it.
Having looked through their
source, it quickly became obvious
that one of their misdemeanours
was repetition of very similar code
across many different forms. This
was done for a variety of reasons,
one being that they wanted to
enforce a consistent user interface
throughout the application.

As seasoned Delphi developers
will know, the standard group box
has many deficiencies, perhaps the
main one being that a disabled
group box doesn’t automatically
disable all the child controls con-
tained within it. For sure, it’s
impossible for the end-user to
actually interact with the controls

inside a disabled group box, but
nevertheless these controls con-
tinue to look very un-disabled!
Worse, Borland’s group box does
not even bother to make itself look
disabled, so the net effect (from a
naive end-user’s viewpoint) is
what looks like an enabled group
box containing a set of what look
like enabled controls, all of which
stubbornly ignore any attempt at
user interaction. Great confusion
and many tech support calls are
the inevitable results!

In an effort to eliminate this con-
fusion, the aforementioned devel-
opers decided to write code which
explicitly disabled each and every
child control when a group box
was disabled, enabling those con-
trols again when the group box was
enabled. This can obviously
amount to a lot of tedious, repeti-
tious code, but they decided to go
further by changing the Colorprop-
erty of various controls to reflect
their disabled state.

To understand what I mean here,
consider the edit box, listbox,
combobox, memo control and
date-time picker. All these compo-
nents have a white (strictly speak-
ing, it’s clWindow, but it’s white with
the standard Windows colour
scheme) ‘type here!’ area which
remains resolutely white even
when the control is disabled. The
folks I spoke to thought this was
confusing to inexperienced Win-
dows users (I tend to agree), and
they wanted the Color property to
automatically change to clBtnFace
when the control was disabled.

What these developers had done
was to add reams of explicit code
which altered the colour and
enabled/disabled state of each
child control whenever the enclos-
ing group box changed from
enabled to disabled, or vice versa.
All this ‘grunt-level’ code had to be
replicated for each group box on

the form, and for each form in the
application. I gently suggested that
by encapsulating the required
functionality into a custom version
of the group box component, they
could dispense with a huge
amount of messy code which made
it more difficult to see what each
source module was really trying to
achieve. Thus was born the idea of
a new, improved, group box.

But maybe you’ve never used
the technique of enabling and dis-
abling group boxes in your own
application? If not, consider the
sort of situation shown in Figure 1.
This dialog is part of Microsoft’s
RAS support. The top of the dialog
contains a Security options group
box which is subdivided into two
other options, Typical and
Advanced. When Typical is selected,
the Advanced items (a text label and
pushbutton) are shown as dis-
abled, whereas selecting Advanced
disables all the controls in the Typ-
ical area: the two checkboxes,
combobox, and the label control
above the combo.

In this situation, there’s only one
group box, the Security options
box that encloses everything. But
imagine how much handier things
would be if we had a group box
around each of the ‘sub-groups’
that I’ve just described. If these
group boxes really did disable their
children properly, then it would
only be necessary to enable/
disable a single component rather
than several. And as I always say,
less code equals less bugs. But
how can we put a group box
around a set of controls without
the group box borders showing
up? With an ordinary group box
you can’t, of course, but with my
group box, you can do just that and
a lot more besides. But I’m getting
ahead of myself, let me introduce
you to TGroupBoxEx.

What’s New In TGroupBoxEx
You might be forgiven for thinking
that there’s not much about the
humble group box that can be
improved but I hope to persuade
you otherwise. Let’s begin with
something extremely trivial, but
which irritates my concept of artis-
tic perfection. If you look closely at

June 2000 The Delphi Magazine 31

the caption string of an ordinary
group box, you’ll see that the hori-
zontal group box border butts
right up against it on either side,
nasty. I don’t like returning to my
car to find other folks have parked
their cars half an inch from my
front and rear bumpers, and I feel
that the group box caption string
needs a bit more breathing space
too. I know I’m not the only
Delphi/C++Builder developer who
feels the same way, because I’ve
noticed other programmers add a
space to the front and back of their
group box caption string. TGroup-
BoxEx will do the job for you, auto-
matically, via a new Boolean prop-
erty called CaptionSpaces.

I’ve already mentioned that I
wanted to be able to inhibit the dis-
play of the group box border. This
is accomplished through another
Boolean property called ShowBorder

which does exactly what it says on
the tin. In fact, if you set ShowBorder
to False and specify an empty cap-
tion string you’ve effectively got
yourself a ‘stealth’ group box.
From the end-user’s perspective,
he/she doesn’t see a group box at
all, but from a programming per-
spective you can still use the group
box as a handy container for
multiple components and, as I’ve
pointed out already, you can
conveniently use a stealth group
box as a way of enabling/disabling
a whole slew of related compo-
nents via a single assignment to the
group box Enabled property.

This brings me neatly on to one
of the most important features of
TGroupBoxEx: the ability to automat-
ically enable/disable child compo-
nents. In the foregoing discussion,
I’ve already pointed out that not
only is this a great idea from the
perspective of reducing repetitive
code, but it also provides better
visual cues to the user, especially if
you follow through on my idea of
greying-out edit boxes, combo-
boxes, and so forth. Again, TGroup-
BoxEx will do this automatically for
you, because it recognises the
following five child component
classes and sets each child compo-
nent’s Color property to either
clBtnFace or clWindows according
to whether or not the group box is
being disabled: TEdit, TListBox,
TComboBox, TMemo and
TDateTimePicker.

Now I know what you’re think-
ing: what if you don’t want to make
use of this automatic greying-out
facility? Well, OK, if you’re happy
having edit boxes, memo boxes,
etc, that are disabled but don’t
actually look disabled, then I won’t
stop you. I won’t encourage you,
but I won’t stop you either! To
cater for this scenario, TGroupBoxEx
provides a custom event called
TGroupBox- EnableDisableQuery
which looks like this:

TGroupBoxEnableDisableQuery =
procedure (Sender: TObject;
Control: TControl;
Enabled: Boolean; var
Handled: Boolean) of Object;

When a TGroupBoxEx component is
being enabled or disabled, the
group box will call the above event
handler for every child control in
the group box. If you don’t want to
take advantage of the automatic
greying-out facility, you can simply
set the Handled parameter to True,
that’s all you have to do. In such a
case, all the disabled child
controls will continue to look
enabled, even though they’re not.
If you leave the Handled parameter
set to its default value of False,
then the group box will go ahead
and perform automatic greying-
out for you.

But this raises another question;
what if you do want to take advan-
tage of the auto-greying facility,
but you have some special custom
control class that’s not recognised
by TGroupBoxEx? Or maybe you
want all your disabled TEdit boxes
to appear as fluorescent pink irre-
spective of the current Windows
colour scheme. Again, this is up to
you. The above function prototype
takes four parameters. Sender is
the source of the event and there-
fore corresponds to the TGroup-
BoxEx control itself. Control is a ref-
erence to the child control that’s
being enabled or disabled, and of
course, you can use TObject.
ClassName to determine the type of
control in the usual way. The
Enabled parameter shows whether
the control is being enabled or dis-
abled, and we’ve already dis-
cussed the Handled parameter.

To put this in concrete terms,
suppose you’ve implemented a
group box which contains a
TSpinEdit control, which isn’t one
of the ‘standard’ classes recog-
nised by TGroupBoxEx. In order to
perform automatic greying-out of
all spin-edit controls within all
TGroupBoxEx boxes on your form,
just point all the group boxes at a
shared OnGroupBoxEnableDisable-
Query event handler which looks
like Listing 1. As you can see, it spe-
cifically checks for TSpinEdit and

procedure TForm1.GroupBoxEx1EnableDisableQuery(Sender: TObject; Control:
TControl; Enabled: Boolean; var Handled: Boolean);

begin
if Control.ClassName = 'TSpinEdit' then begin
if Enabled then
TSpinEdit (Control).Color := clWindow

else
TSpinEdit (Control).Color := clBtnFace;

Handled := True;
end;

end;

➤ Listing 1

➤ Figure 1: Here’s a Microsoft
dialog which would benefit
from decent group boxes.
Internally, this RAS
configuration dialog is
undoubtedly complicated by
the need to explicitly enable/
disable each control according
to the state of the two
‘master’ radio buttons.

32 The Delphi Magazine Issue 58

does the necessary according to
the state of the Enabledparameter.

This raises one final question.
Why didn’t I just make TGroupBoxEx
automatically recognise TSpinEdit
and every other ‘greyable’ VCL
component that’s going? The
answer is simple: for that to work,
you’d effectively have to link all
those infrequently-used control
classes into any application that
uses TGroupBoxEx, irrespective of
whether or not the application
ever used those control types. I felt
that concentrating on the five
aforementioned control classes
represented a good compromise.

While we’re on the subject of
enabling/disabling the group box,
I’ve also written TGroupBoxEx so
that when the group box is dis-
abled, the group box caption string
is correctly drawn with a sunken,
greyed-out, appearance, unlike the
standard issue group box.

Another feature of TGroupBoxEx is
the ability to display the caption
string in one of twelve possible
positions. For each of the four
sides of the group box itself, the
caption bar can appear at either
end or in the middle. This is
controlled through another new
enumerated type property,
CaptionPos (see Listing 2).

If you’re wondering what the dif-
ference is between gbBottomRight
and gbRightBottom, the naming con-
vention that I’ve adopted is to
specify the side of the box first, fol-
lowed by the position along that
side. In other words, gbBottomRight
will locate the caption string on the
bottom side of the group box, with
the string in the rightmost posi-
tion. gbRightBottom will place the
caption string on the right hand
side of the box, with the string in
the bottom position, and so on.
When the caption string is located
on the left or right sides of the
group box, the font that’s used will
automatically be rotated through
either 90 or 270 degrees so that it
still sits vertically alongside the

sides of the group box. This facility
only works with TrueType fonts.

Group boxes being what they
are, developers sometimes want a
caption string that’s far more
noticeable than the standard issue.
The big problem here is that if you
select a nice ‘fat’ font for your
group box caption, all the controls
inside your group box will adopt
the same look because, as I’m sure
you appreciate, Delphi controls
have their ParentFont properties
set Trueby default. This means that
you’re forced to set the ParentFont
properties of all the child controls
to False and that in turn makes
things more tedious when you
want to apply font changes that
affect them all. To get around this,
TGroupBoxEx introduces a new TFont
property called CaptionFont, which
affects only the the caption.

The last (but by no means least!)
TGroupBoxEx enhancement is the
ability to render a custom back-
ground behind the caption. I par-
ticularly wanted to add this feature
to my group box control because
I’ve seen some other shareware
group box controls that allow you
to put a graduated fill, bitmap or
whatever behind the group box
caption. Used tastefully, and in
conjunction with the CaptionPos
and ShowBorder properties, you can
get some nice effects. The custom
caption background facility is
implemented via another event
handler which looks like this:

TGroupBoxPaintCaptionBackground
= procedure (Sender: TObject;
Canvas: TCanvas; const Rect:
TRect; var Handled: Boolean)
of Object;

As expected, Sender is the group
box control that’s requesting the
custom caption background paint.
Canvas is the canvas to use for
painting the custom background,
whereas Rect represents the area
available for painting. There are a
couple of points to make here.
Firstly, if you want to write a gener-
alised graduated fill handler or

something of that nature, you need
to remember that the group box
can handle vertically oriented cap-
tions. Thus, to determine the grad-
uated fill direction you could cast
Sender to TGroupBoxEx and check
the CaptionPos property or, more
simply, just examine the passed
rectangle to determine which is
the longest side and thus the orien-
tation. In most cases, this isn’t
likely to be needed because, of
course, you already know exactly
how you’ve set up a particular
group box. Such considerations
only apply if you’re using a shared
OnPaintCaptionBackground event
handler with multiple group boxes
on the same form, some of which
have a vertically oriented caption,
and some don’t. Needless to say,
this wouldn’t represent a very
appealing user interface!

Secondly, bear in mind that the
passed Rect argument defines the
prospective caption area along an
entire side of the group box. In
other words, the rectangle isn’t
‘auto-sized’ according to the
length of the caption string, but it
is auto-sized according to the
width or height of the group box. I
did things this way because I like
having a nice graduated fill that
covers most of the width/height of
the group box. However, since you
can easily access the Canvas and
Captionproperties via the OnPaint-
CaptionBackground handler, it’s no
big deal to call TCanvas. TextWidth
and calculate a bounding rectangle
that closely hugs the text.

How It All Works
OK, enough of the new features
list. You can see the full source for
TListBoxEx in Listing 3. Let’s take a
walk through the code listing. The
first point to note is that, rather
than bunging all the aforemen-
tioned new properties directly into
the control, I chose to place them
inside a TPersistent class called
TGroupBoxOptions. This class, in
turn, is exposed by the group box
control itself as a property called
Advanced. As experienced compo-
nent developers will realise, this
has the effect of turning all those
new properties into nested prop-
erties, each of which appears

TGroupBoxCaptionPos = (gbTopLeft, gbTopMiddle, gbTopRight, gbBottomLeft,
gbBottomMiddle, gbBottomRight, gbLeftTop, gbLeftMiddle, gbLeftBottom,
gbRightTop, gbRightMiddle, gbRightBottom);

➤ Listing 2

34 The Delphi Magazine Issue 58

inside the Advanced property. You
can see this happening in Figure 2.

This approach requires a little
more work, but it is worthwhile,
especially when you’re effectively
supplementing the functionality of
an existing component. By group-
ing all the new properties under a
single Advanced property, experi-
enced developers can quickly find
the new features. Moreover, by
using a property name of Advanced,
the Object Inspector will sort the
property list such that this prop-
erty generally appears first,
making it even easier to find.

The TGroupBoxOptions.Create
constructor is called from the
group box constructor, creating
the Options object and setting the
default parameter values. At the
same time, it sets up an OnChange
handler for the caption font object
so that the control is automatically
notified whenever the caption font
gets changed. This gets routed to
the CaptionFontChanged method,
which in turn calls the Changed pro-
cedure to notify the group box that
it needs to redraw itself. The same
mechanism is invoked when the
CaptionSpacesproperty is changed,
CaptionPos is modified, and so on.
As I pointed out, this does add a
little to the complexity of the code,
but not much, and I think it’s well
worth it for the convenience of
having all the new properties
neatly grouped together.

Yes, I realise that Delphi 5 intro-
duces property categories within
the Object Inspector which repre-
sents an alternative approach to
traditional nested properties.
However, aside from the obvious
point that this only works with
Delphi 5 and C++Builder 5, I don’t
particularly like the way Borland
implemented this. As I said when
we reviewed Delphi 5 in Developers
Review, I would have preferred to
see a mechanism which allowed
the component user to freely
create, delete and rename catego-
ries, moving items from one
category to another at will.

The heart of TGroupBoxEx is
TCustomGroupBoxEx, which does all
the real work. It exists so you can
derive your own variations from
this class, choosing not to publish
certain properties as appropriate.
The TCustomGroupBoxEx, in turn, is
derived from TCustomGroupBox. You
might be forgiven for thinking that
the latter works by sub-classing
Microsoft’s underlying API-level
control, but interestingly it doesn’t
seem to: it’s a pure VCL control.

The fun starts in the TCustom-
GroupBoxEx.CMEnabledChanged rou-
tine which takes care of walking
through the list of child controls,
enabling or disabling each one as
required. You’ll notice the call to
Invalidate here which is obviously
needed so that the group box will
update its own appearance too. For
each child control in the group
box, the routine checks to see if the
fOnEnableDisableQuery event han-
dler has been assigned. If so, it’s
called to give the application an
opportunity to make custom
changes to the appearance of the
control, as discussed earlier. If the
application sets the Handled flag,
then CMEnabledChanged simply skips
the child control and moves on to
the next one. Notice that setting
this flag to True means that the
group box doesn’t even attempt to
set the Enabled property of the con-
trol, the assumption is that if the

application wants special process-
ing, then it knows what it’s doing.
Once we’ve got the go-ahead to
enable/disable the child controls,
and auto-grey their appearance
(as discussed earlier), the code
just checks for the five recognised
control classes and does the
business as necessary.

The Paintmethod is responsible
for drawing the actual group box
border and for calling the
PaintCaption routine. Parts of this
code bear some resemblance to
the original Paintmethod in TCust-
omGroupBox! Needless to say, what
goes on here isn’t too tricky, the
main thing is to indent one of the
four sides of the group box accord-
ing to wherever the caption is cur-
rently positioned. This allows for
the caption string to straddle the
group box border in the usual way.
Notice that I use Canvas.
TextHeight to determine the height
of the caption string. This obvi-
ously becomes the ‘width’ (in
physical terms) if the caption is
displayed in vertical orientation.

Back in the old days, this would-
n’t have worked because monitors
didn’t have square pixels or, to put
it another way, the horizontal
pixels per inch resolution was dif-
ferent to the vertical resolution.
This meant that if you rotated a
font through 90 degrees, the
‘width’ of a vertical font would be
different to the height of the corre-
sponding horizontal font. Ever
since the advent of VGA, Windows
has been blessed with square
pixels which certainly simplifies
code such as that shown here.

If the Caption property is a non-
empty string, then PaintCaption is
called to draw it, and this is where
most of the tricky stuff takes place.
Like most folks, I like to do the easy
bits first, so PaintCaption handles
the six possible horizontal text
positions first. After padding the
caption string with spaces accord-
ing to the setting of the Caption-
Spaces property, the code then
determines the pixel width and
height of the resulting string. A
notional bounding rectangle is

➤ Figure 2: When enhancing an existing
component, it’s often good to nest new
properties into an ‘Advanced’ property,
so it is immediately obvious what
functionality is being added.

➤ Facing page, Listing 3

June 2000 The Delphi Magazine 35

unit GroupBoxEx;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls,Forms, Dialogs, StdCtrls;

type
TGroupBoxCaptionPos = (gbTopLeft, gbTopMiddle,
gbTopRight, gbBottomLeft, gbBottomMiddle, gbBottomRight,
gbLeftTop, gbLeftMiddle, gbLeftBottom,
gbRightTop, gbRightMiddle, gbRightBottom);

// Custom procedures
TGroupBoxEnableDisableQuery = procedure (Sender: TObject;
Control: TControl; Enabled: Boolean; var Handled:
Boolean) of Object;

TGroupBoxPaintCaptionBackground = procedure (Sender:
TObject; Canvas: TCanvas; const Rect: TRect; var
Handled: Boolean) of Object;

TGroupBoxOptions = class (TPersistent)
private
fOnChange: TNotifyEvent;
fCaptionSpaces: Boolean;
fShowBorder: Boolean;
fCaptionFont: TFont;
fCaptionPos: TGroupBoxCaptionPos;
procedure Changed;
procedure CaptionFontChanged (Sender: TObject);
procedure SetShowBorder (Value: Boolean);
procedure SetCaptionPos (Value: TGroupBoxCaptionPos);
procedure SetCaptionFont (Value: TFont);
procedure SetCaptionSpaces (Value: Boolean);

public
constructor Create;
destructor Destroy; override;

published
property OnChange: TNotifyEvent read fOnChange
write fOnChange;

property CaptionSpaces: Boolean read fCaptionSpaces
write SetCaptionSpaces default True;

property ShowBorder: Boolean read fShowBorder
write SetShowBorder default True;

property CaptionPos: TGroupBoxCaptionPos
read fCaptionPos
write SetCaptionPos default gbTopLeft;

property CaptionFont: TFont read fCaptionFont
write SetCaptionFont;

end;
TCustomGroupBoxEx = class (TCustomGroupBox)
private
fOptions: TGroupBoxOptions;
fOnEnableDisableQuery: TGroupBoxEnableDisableQuery;
fOnGroupBoxPaintCaptionBackground:
TGroupBoxPaintCaptionBackground;

procedure OptionsChanged (Sender: TObject);
procedure CMEnabledChanged (var Msg: TMessage); message
cm_EnabledChanged;

protected
procedure AdjustClientRect (var Rect: TRect); override;
procedure Paint; override;
procedure PaintCaption (Str: String);

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;
property Advanced: TGroupBoxOptions read fOptions
write fOptions;

property OnEnableDisableQuery:
TGroupBoxEnableDisableQuery read fOnEnableDisableQuery
write fOnEnableDisableQuery;

property OnPaintCaptionBackground:
TGroupBoxPaintCaptionBackground
read fOnGroupBoxPaintCaptionBackground
write fOnGroupBoxPaintCaptionBackground;

end;
TGroupBoxEx = class (TCustomGroupBoxEx)
published
property Align;
property Anchors;
property BiDiMode;
property Caption;
property Color;
property Constraints;
property Ctl3D;
property DockSite;
property DragCursor;
property DragKind;
property DragMode;
property Enabled;
property Font;
property ParentBiDiMode;
property ParentColor;
property ParentCtl3D;
property ParentFont;
property ParentShowHint;
property PopupMenu;
property ShowHint;
property TabOrder;
property TabStop;
property Visible;
property OnClick;
property OnContextPopup;
property OnDblClick;
property OnDragDrop;
property OnDockDrop;
property OnDockOver;

property OnDragOver;
property OnEndDock;
property OnEndDrag;
property OnEnter;
property OnExit;
property OnGetSiteInfo;
property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
property OnStartDock;
property OnStartDrag;
property OnUnDock;
property Advanced;
property OnEnableDisableQuery;
property OnPaintCaptionBackground;

end;
procedure Register;
implementation
uses ComCtrls;
constructor TGroupBoxOptions.Create;
begin
Inherited Create;
fCaptionPos := gbTopLeft;
fCaptionSpaces := True;
fCaptionFont := TFont.Create;
fCaptionFont.OnChange := CaptionFontChanged;
fShowBorder := True;

end;
destructor TGroupBoxOptions.Destroy;
begin
fCaptionFont.Destroy;
Inherited Destroy;

end;
procedure TGroupBoxOptions.Changed;
begin
if Assigned (fOnChange) then fOnChange (Self);

end;
procedure TGroupBoxOptions.CaptionFontChanged (Sender:
TObject);

begin
Changed;

end;
procedure TGroupBoxOptions.SetCaptionSpaces (Value:

Boolean);
begin
if fCaptionSpaces <> Value then begin
fCaptionSpaces := Value;
Changed;

end;
end;
procedure TGroupBoxOptions.SetCaptionFont (Value: TFont);
begin
fCaptionFont.Assign (Value);
Changed;

end;
procedure TGroupBoxOptions.SetCaptionPos (Value:
TGroupBoxCaptionPos);

begin
if fCaptionPos <> Value then begin
fCaptionPos := Value;
Changed;

end;
end;
procedure TGroupBoxOptions.SetShowBorder (Value: Boolean);
begin
if fShowBorder <> Value then begin
fShowBorder := Value;
Changed;

end;
end;
constructor TCustomGroupBoxEx.Create(AOwner: TComponent);
begin
Inherited Create (AOwner);
fOptions := TGroupBoxOptions.Create;
fOptions.OnChange := OptionsChanged;

end;
destructor TCustomGroupBoxEx.Destroy;
begin
fOptions.Free;
Inherited Destroy;

end;
procedure TCustomGroupBoxEx.OptionsChanged (Sender:
TObject);
begin
Invalidate;

end;
procedure TCustomGroupBoxEx.AdjustClientRect (var Rect:
TRect);
begin
// Don't pass this on to Inherited

end;
procedure TCustomGroupBoxEx.CMEnabledChanged (var Msg:
TMessage);

var
Idx: Integer;
Child: TControl;

{ CONTINUED ON FOLLOWING PAGE...}

36 The Delphi Magazine Issue 58

{CONTINUED FROM PREVIOUS PAGE ...}
Handled: Boolean;

begin
Inherited;
Invalidate;
// Now enable or disable all the contained controls
for Idx := 0 to ControlCount - 1 do begin
Child := Controls [Idx];
// Query application to see if we should do it
Handled := False;
if Assigned (fOnEnableDisableQuery) then
fOnEnableDisableQuery (Self, Child, Enabled, Handled);

if not Handled then begin
Child.Enabled := Enabled;
if Child.ClassName = 'TEdit' then begin
if Enabled then
TEdit (Child).Color := clWindow

else
TEdit (Child).Color := clBtnFace;

end;
if Child.ClassName = 'TListBox' then begin
if Enabled then
TListBox (Child).Color := clWindow

else
TListBox (Child).Color := clBtnFace;

end;
if Child.ClassName = 'TComboBox' then begin
if Enabled then
TComboBox (Child).Color := clWindow

else
TComboBox (Child).Color := clBtnFace;

end;
if Child.ClassName = 'TMemo' then begin
if Enabled then
TMemo (Child).Color := clWindow

else
TMemo (Child).Color := clBtnFace;

end;
if Child.ClassName = 'TDateTimePicker' then begin
if Enabled then
TDateTimePicker (Child).Color := clWindow

else
TDateTimePicker (Child).Color := clBtnFace;

end;
// Add your own type-specific preferences here?

end;
end;

end;
procedure TCustomGroupBoxEx.Paint;
var
R: TRect;
H2: Integer;

begin
with Canvas do begin
Font := fOptions.CaptionFont;
H2 := TextHeight ('0') div 2 - 1;
case fOptions.fCaptionPos of
gbTopLeft..gbTopRight:
R := Rect (0, H2, Width, Height);

gbBottomLeft..gbBottomRight:
R := Rect (0, 0, Width, Height - H2);

gbLeftTop..gbLeftBottom:
R := Rect (H2, 0, Width, Height);

gbRightTop..gbRightBottom:
R := Rect (0, 0, Width - H2, Height);

end;
if Ctl3D then begin
Inc(R.Left);
Inc(R.Top);
Brush.Color := clBtnHighlight;
if fOptions.ShowBorder then FrameRect(R);
OffsetRect (R, -1, -1);
Brush.Color := clBtnShadow;

end else
Brush.Color := clWindowFrame;

if fOptions.ShowBorder then FrameRect(R);
if Text <> '' then PaintCaption (Text);

end;
end;
procedure TCustomGroupBoxEx.PaintCaption (Str: String);
var
R: TRect;
lf: TLogFont;
tm: TTextMetric;
BackgroundHandled: Boolean;
X, Y, Flags, TH, TW: Integer;

begin
if fOptions.CaptionSpaces then Str := ' ' + Str + ' ';
if fOptions.CaptionPos in [gbLeftTop, gbRightBottom] then
Str := Str + ' ';

BackgroundHandled := False;
TH := Canvas.TextHeight (Str);
TW := Canvas.TextWidth (Str);
// Deal with the easy stuff first !
if fOptions.CaptionPos in [gbTopLeft..gbBottomRight] then
begin
R := Rect (8, 0, Width - 16, TH);
if fOptions.CaptionPos in [gbBottomLeft..gbBottomRight]
then OffsetRect (R, 0, Height - TH);

Flags := dt_SingleLine;
case fOptions.CaptionPos of
gbTopLeft, gbBottomLeft: Flags := Flags or dt_Left;
gbTopMiddle, gbBottomMiddle: Flags := Flags or
dt_Center;

gbTopRight, gbBottomRight: Flags := Flags or dt_Right;
end;
if Assigned (OnPaintCaptionBackground) then
OnPaintCaptionBackground (Self, Canvas, R,
BackgroundHandled);

Canvas.Brush.Color := Color;
if BackgroundHandled then SetBkMode (Canvas.Handle,
Transparent);

if Enabled then DrawText (Canvas.Handle, PChar (Str),
-1, R, Flags) else begin
SetTextColor(Canvas.Handle,
ColorToRGB(clBtnHighlight));

DrawText (Canvas.Handle, PChar (Str), -1, R, Flags);
OffsetRect (R, -1, -1);
SetBkMode (Canvas.Handle, Transparent);
SetTextColor(Canvas.Handle,ColorToRGB(clBtnShadow));
DrawText (Canvas.Handle, PChar (Str), -1, R, Flags);

end;
end else begin
R := Rect (0, 8, TH, Height - 16);
if fOptions.CaptionPos in [gbRightTop..gbRightBottom]
then
OffsetRect (R, Width - TH, 0);

// This is only going to work with TrueType fonts....
GetTextMetrics (Canvas.Handle, tm);
if (tm.tmPitchAndFamily and tmpf_TrueType) = 0 then

Exit;
if Assigned (OnPaintCaptionBackground) then
OnPaintCaptionBackground (Self, Canvas, R,
BackgroundHandled);

// Now build a new, vertical font.....
GetObject (Canvas.Font.Handle, sizeOf (lf), @lf);
if fOptions.CaptionPos in [gbLeftTop..gbLeftBottom] then
lf.lfEscapement := 900

else lf.lfEscapement := 2700;
Canvas.Font.Handle := CreateFontIndirect (lf);
Canvas.Brush.Color := Color;
X := R.Left; Y := R.Top;
case fOptions.CaptionPos of
gbLeftTop, gbRightTop: Y := 8 + TW;
gbLeftMiddle, gbRightMiddle: Y := ((Height - TW) div
2) + TW;

gbLeftBottom, gbRightBottom: Y := Height - 16;
end;
if lf.lfEscapement = 2700 then begin
Dec (Y, TW); Inc (X, TH);

end;
if BackgroundHandled then SetBkMode (Canvas.Handle,
Transparent);

if Enabled then ExtTextOut (Canvas.Handle, X, Y, 0, Nil,
PChar (Str), Length (Str), Nil) else begin
SetTextColor (Canvas.Handle, ColorToRGB
(clBtnHighlight));

ExtTextOut (Canvas.Handle, X, Y, 0, Nil, PChar (Str),
Length (Str), Nil);

Dec (X); Dec (Y);
SetBkMode (Canvas.Handle, Transparent);
SetTextColor (Canvas.Handle, ColorToRGB
(clBtnShadow));

ExtTextOut (Canvas.Handle, X, Y, 0, Nil, PChar (Str),
Length (Str), Nil);

end;
end;

end;
procedure Register;
begin
RegisterComponents('Experimental', [TGroupBoxEx]);

end;
end.

first calculated, assuming that the
caption is in the gbTopLeft posi-
tion. Next, the code tests to see if
the caption string should be on the
bottom of the group box and, if so,
offsets the rectangle down to the
bottom line. Finally, one of the
dt_Left, dt_Center or dt_Right bit

flags is OR’d into the Flags variable
according to the required align-
ment of the caption.

This is another good reason for
passing the entire side’s-worth of
bounding rectangle to the OnPaint-
CaptionBackground routine. By deal-
ing with the entire potential length

of the rectangle, we can offload the
business of text positioning onto
the Windows API routine by pass-
ing the alignment flags to the
DrawText routine. This obviously
wouldn’t be possible if we were
dealing with a tightly cropped
bounding rectangle.

38 The Delphi Magazine Issue 58

The next job is to call the
OnPaintCaptionBackground handler,
if any. This renders the back-
ground image and sets the
BackgroundHandled flag to indicate
whether the application rendered
the background. Why do we need
this information? Look at it like
this: if the application did provide
a custom background, then we
need to ensure that the caption is
drawn transparently. If it isn’t, then
the caption will obliterate the
background wherever text falls,
which wouldn’t look good. On the
other hand, if the application
didn’t render a background, then
we must ensure that the text is
drawn opaquely. If it isn’t, then the

previously drawn group box
border line will ‘show through’ the
actual caption string and give an
unpleasant strike-through effect.

For this reason, the code checks
to see if a background has been
rendered and, if so, uses the
SetBkMode API call to set transpar-
ent text drawing at the API level. It
then makes a single call to DrawText
for enabled group boxes (using the
text colour specified in Caption-
Font) and makes two calls to
DrawText for disabled group boxes.
This ensures that disabled cap-
tions are rendered using the famil-
iar ‘etched’ look. Notice that,
regardless of the value of the
BackgroundHandled variable, the
second call to DrawText must be
done transparently for obvious
reasons: we won’t get the etched
look if the second call obliterates
the effect of the first!

Much the same sequence of
events takes place with the vertical
caption situation, except that we
have to go to the extra trouble of
creating a custom rotated font. As
you’ll appreciate, Windows can’t
rotate a bitmapped font (although
now that everybody’s using square
pixels I can’t honestly see why it
doesn’t) so the code simply exits
without drawing the caption if a

non-TrueType font is being used.
Let me say that again: if you’re not
using a TrueType font, you won’t
see any caption when the text is
oriented vertically.

As before, the application is
given the opportunity of rendering
a custom background, after which
the code uses CreateFontIndirect
to create the rotated font. The
degree of rotation is 90 degrees
(anticlockwise) for captions on the
left side of the group box and 270
degrees for captions on the right
side. This time round, because the
text is being drawn vertically, we
can’t expect things like DrawText to
handle the text alignment for us, so
the vertical text case requires a
little more effort.

Test-Bed Application
Figure 3 shows a souped-up group
box as part of my little test-bed
application. The group box con-
tains a random assortment of con-
trols, including a spin control.
When the group box is disabled, all
the controls are automatically
greyed-out and the fancy gradu-
ated caption background disap-
pears, to be replaced by an etched
caption using the same font. For
the sake of space, the full source
code for the test-bed isn’t included
here, but you can see the impor-
tant stuff in Listing 4. The
OnPaintCaptionBackground checks
to see if the group box is enabled
and, if not, simply exits leaving
the Handled flag set to False. If the
box is enabled, it calls a simple

➤ Figure 3: An example of what
can be done with a graduated
fill behind the caption bar.

➤ Figure 4: The TGroupBoxEx component
makes it easy to implement mutually
exclusive sets of components such as the
two group boxes here. In stealth mode,
you don’t even need to display the
borders around each group box.

procedure PaintGradient(ACanvas: TCanvas; ARect: TRect;
StartColor, EndColor: LongInt);

var
Idx: Integer;
sr, sg, sb, er, eg, eb: Byte;

begin
sr := GetRValue (StartColor);
sg := GetGValue (StartColor);
sb := GetBValue (StartColor);
er := GetRValue (EndColor);
eg := GetGValue (EndColor);
eb := GetBValue (EndColor);
with ACanvas do for Idx := 0 to 31 do begin
Brush.Color := RGB (sr + MulDiv (Idx, er - sr, 31),
sg + MulDiv (Idx, eg - sg, 31), sb + MulDiv (Idx, eb - sb, 31));

ACanvas.FillRect (Rect (ARect.Left, ARect.Top + MulDiv(Idx,
ARect.Bottom - ARect.Top, 32), ARect.Right, ARect.Top +
MulDiv(Idx + 1, ARect.Bottom - ARect.Top, 32)));

end;
end;
procedure TForm1.GroupBoxEx1PaintCaptionBackground (Sender: TObject; Canvas:
TCanvas; const Rect: TRect; var Handled: Boolean);
begin
if TGroupBoxEx (Sender).Enabled then begin
PaintGradient (Canvas, Rect, ColorToRGB (clWhite), ColorToRGB (clYellow));
Handled := True;

end;
end;

➤ Listing 4

procedure TForm1.RadioButton2Click(
Sender: TObject);

begin
GroupBoxEx2.Enabled :=
Sender = RadioButton2;

GroupBoxEx3.Enabled :=
Sender = RadioButton1;

end;

➤ Listing 5

June 2000 The Delphi Magazine 39

little PaintGradient utility routine
to paint the white to yellow gradu-
ated stripe which you can see in
the screenshot.

Because the event handler
knows which group box it’s work-
ing with (the Sender parameter),
you could potentially give a differ-
ent coloured stripe to each group
box on a form. As ever, I’m not nec-
essarily advocating the use of such
pyrotechnics, I’m simply pointing
out that the flexibility is there!
Finally, you might question why I
didn’t build the graduated stripe
effect into the group box itself.
Again, it’s a question of flexibility:
some apps might want a simple
solid colour, others might want to
build a bitmap behind the caption;
the choice is yours.

Figure 4 shows another aspect of
the test-bed program. Some pro-
grammers like to use checkboxes
or radio buttons to enable or dis-
able group boxes. I toyed with the
idea of building this facility into my
group box control but didn’t want
to go overboard on the rampant
featureitis front; maybe in version
2.0! Nevertheless, TGroupBoxEx
makes it easier to implement this
sort of user interface because of
the ability to properly enable/
disable child controls. With a
shared handler for the two radio
buttons in Figure 4, you don’t really
need to write any more code than
that shown in Listing 5.

This can be extended to handle
as many mutually-exclusive group
boxes as you like.

That’s it for this month. If you
want to take this approach further,
you might wish to implement a new
version of TRadioGroupwhich inher-
its from TCustomGroupBoxEx rather
than from TCustomGroupBox. Have
fun!

Next month’s Beating the System
will be all about getting ready for
Kylix, so don’t miss it!

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level work. He is Technical Editor
of Developers Review which is also
published by iTec. Contact Dave at
TechEditor@itecuk.com

	Building Better Group Boxes
	What’s New In TGroupBoxEx
	How It All Works
	Test-Bed Application

